# DELPHI

## Impact of BGA Warpage on Quality

**Mike Varnau** 

5-11-06

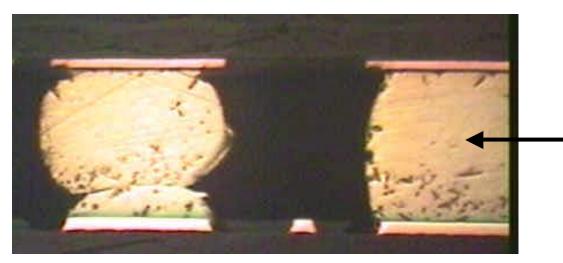
## Contents

### What is a Ball in Cup Failure

### Case Study

- Background
- Problem Identification
- Solution
- Results
- Assembly Related Factors Causing Ball in Cup
- Component Related Factors Causing Ball in Cup
- Trends from Technology Changes
- Summary




## 388 PBGA Interconnect Issue Ball & Cup Interconnect Failure

Also known as "Ball and Socket"

There is a gap between the ball and solder paste. —

The gap contains flux residue.

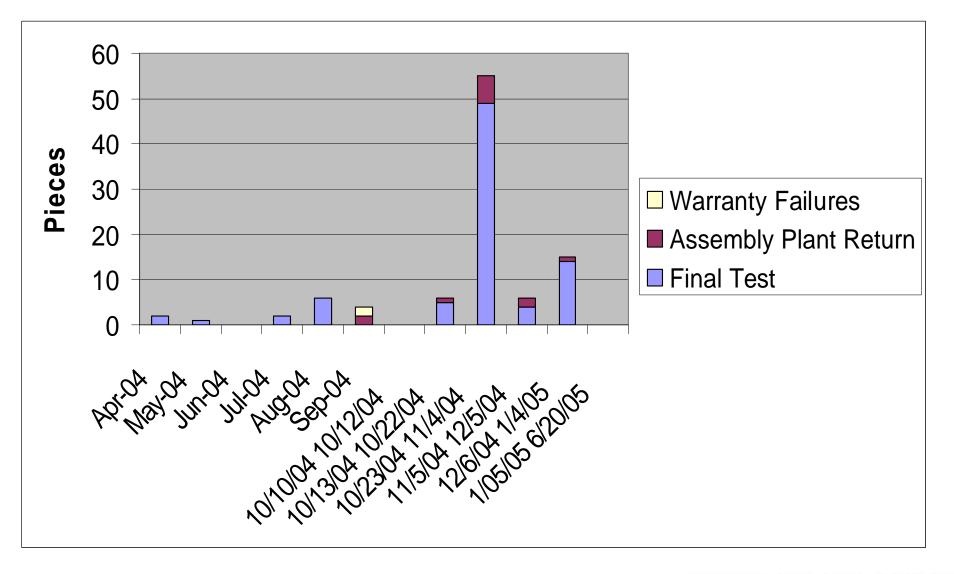




Note how neighbor joint looks stretched rather than round

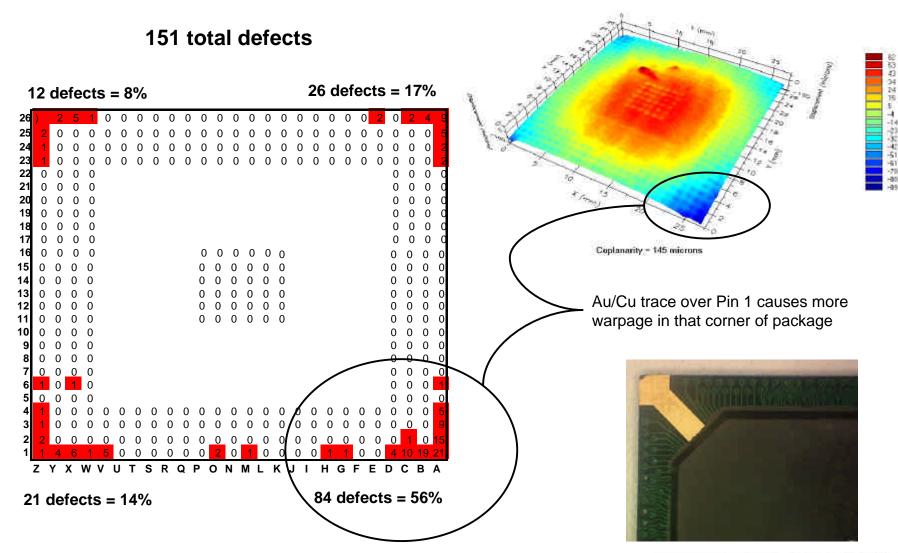


## 388 PBGA Interconnect Issue Background


- Microprocessor in 388 pin 27 x 27 mm PBGA
- High volume production in Automotive Engine Controls
  - Liverpool 3,500 / week
  - Singapore 4,000 / week
  - Milwaukee 10,000 / week

#### Problem was significant only in Milwaukee

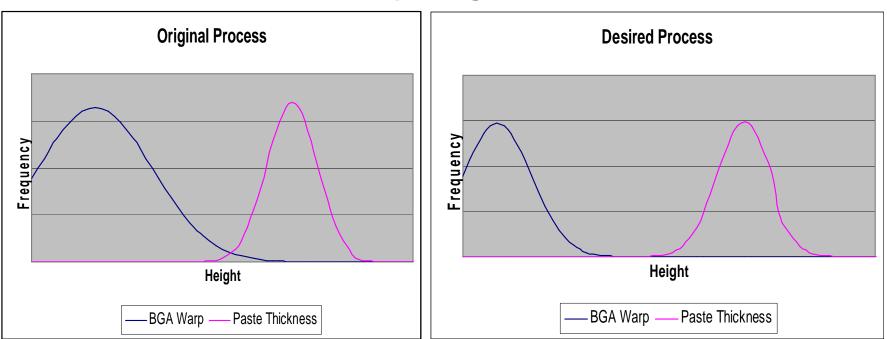
- Product being built in each location was different but similar technology
- Differences identified
  - » More "discriminating" customer for Milwaukee product
    - More aggressive test methodology and limits
  - » Solder paste (lower flux activity) Shown not significant
  - » Solder stencil 125 micron thick in Milwaukee, 150 micron elsewhere
    - Driven by presence of 0402 chip components on Milwaukee product




### 388 PBGA Interconnect Issue Ball & Cup Failures in Milwaukee

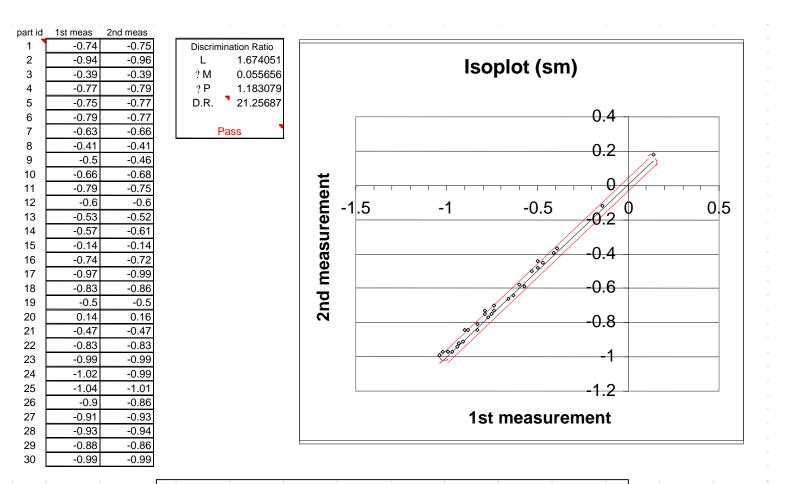





## **388 PBGA Interconnect Issue Concentration Diagram / Warpage Map**






## 388 PBGA Interconnect Issue Original vs Desired State

- Yield loss due to overlapping of process distributions
- BGA Warpage during reflow rises out of printed paste
- Solder solidifies before part flattens out as it cools



**Concept Diagram** 

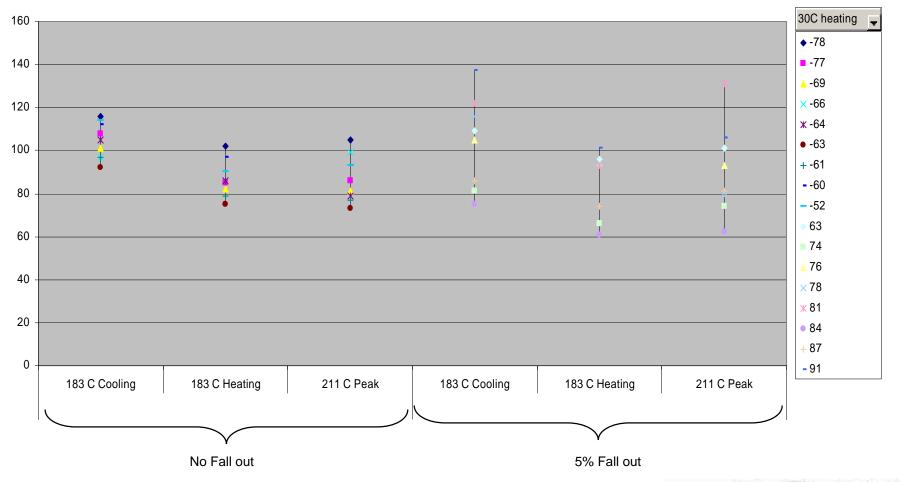
## Isoplot of Warpage Measurement using Coplanarity Measurement System



**Conclusion:** Warpage measurement at the supplier is good enough to discriminate BOB and WOW parts.

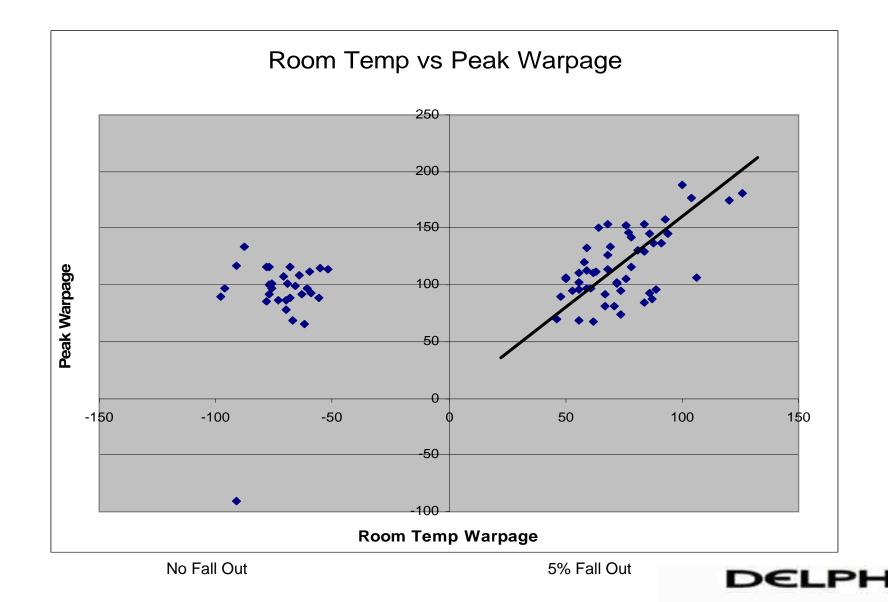


# Comparison of Known Good and Bad Lots using Moiré Interferometry


|                | <b>x — Min E</b><br>this is refe | -               |              |                 | •               | s)             |
|----------------|----------------------------------|-----------------|--------------|-----------------|-----------------|----------------|
| 30C<br>heating | 150C<br>heating                  | 183C<br>heating | 211C<br>peak | 183C<br>cooling | 150C<br>cooling | 30C<br>cooling |
| -78            | 89                               | 102             | 105          | 116             | 103             | -72            |
| -77            | 67                               | 80              | 82           | 100             | 94              | -67            |
| -77            | 79                               | 90              | 90           | 116             | 112             | -65            |
| -69            | 74                               | 82              | 81           | 101             | 97              | -59            |
| -66            | 69                               | 86              | 99           | 97              | 89              | -56            |
| -64            | 77                               | 86              | 79           | 105             | 109             | 64             |
| -63            | 60                               | 75              | 73           | 92              | 89              | -56            |
| -61            | 70                               | 79              | 77           | 97              | 95              | -60            |
| -60            | 88                               | 97              | 93           | 112             | 112             | 68             |
| -52            | 76                               | 90              | 93           | 114             | 105             | 60             |
| 63             | 95                               | 96              | 101          | 109             | 112             | 71             |
| 74             | 60                               | 71              | 88           | 89              | 95              | 70             |
| 74             | 60                               | 61              | 60           | 73              | 73              | 72             |
| 76             | 90                               | 94              | 93           | 105             | 104             | 78             |
| 78             | 88                               | 94              | 79           | 116             | 112             | 80             |
| 81             | 69                               | 93              | 131          | 122             | 96              | 74             |
| 84             | 55                               | 61              | 62           | 75              | 75              | 76             |
| 87             | 67                               | 74              | 81           | 86              | 88              | 75             |
| 91             | 94                               | 101             | 106          | 137             | 123             | 77             |

Samples from lot with no fall out from Ball and Cup defects

Samples from lot with ~ 5% fall out from Ball and Cup defects


## **388 PBGA Interconnect Issue** Warpage vs Temperature

#### Max - Min Warpage at Indicated Temperature





#### **Correlation of Room Temperature vs Peak Warpage** (Data from Assorted Production & Engineering Lots)



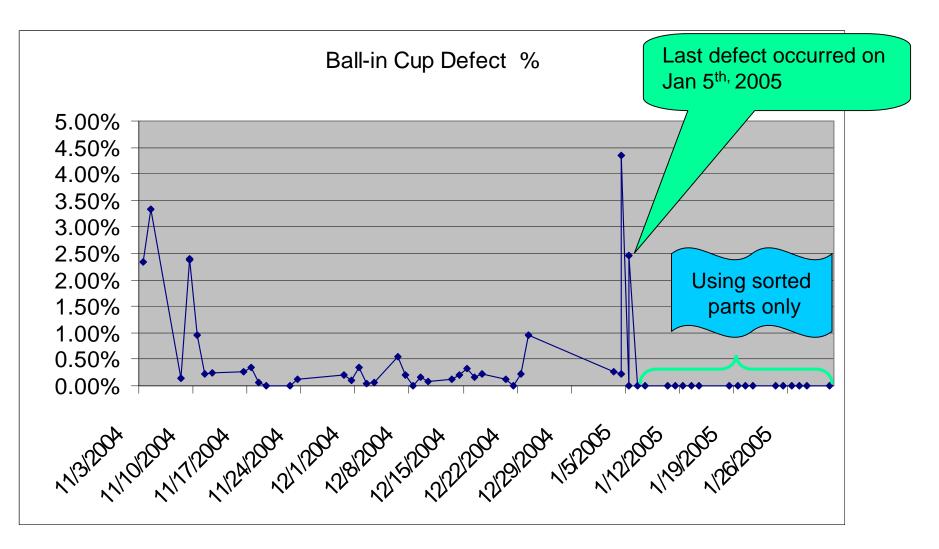
# Comparison of Known Good and Bad Lots using Moiré Interferometry

|                                                   |                |                 | Displac         |              |                 | •               | ,              |           |
|---------------------------------------------------|----------------|-----------------|-----------------|--------------|-----------------|-----------------|----------------|-----------|
|                                                   | 30C<br>heating | 150C<br>heating | 183C<br>heating | 211C<br>peak | 183C<br>cooling | 150C<br>cooling | 30C<br>cooling |           |
|                                                   | -78            | 89              | 102             | 105          | 116             | 103             | -72            |           |
|                                                   | -77            | 67              | 80              | 82           | 100             | 94              | -67            |           |
|                                                   | -77            | 79              | 90              | 90           | 116             | 112             | -65            |           |
|                                                   | -69            | 74              | 82              | 81           | 101             | 97              | -59            |           |
|                                                   | -66            | 69              | 86              | 99           | 97              | 89              | -56            |           |
|                                                   | -64            | 77              | 86              | 79           | 105             | 109             | 64             |           |
| Conclusion: Complete                              | -63            | 60              | 75              | 73           | 92              | 89              | -56            |           |
| <u>Conclusion:</u> Complete separation between No | -61            | 70              | 79              | 77           | 97              | 95              | -60            |           |
| Fallout and 5% Fallout                            | -60            | 88              | 97              | 93           | 112             | 112             | 68             |           |
| parts at 30°C!                                    | -52            | 76              | 90              | 93           | 114             | 105             | 60             | $\square$ |
|                                                   | 63             | 95              | 96              | 101          | 109             | 112             | 71             | $\square$ |
| This can be used as a sort at supplier.           | 74             | 60              | 71              | 88           | 89              | 95              | 70             |           |
| sort at supplier.                                 | 74             | 60              | 61              | 60           | 73              | 73              | 72             |           |
|                                                   | 76             | 90              | 94              | 93           | 105             | 104             | 78             |           |
|                                                   | 78             | 88              | 94              | 79           | 116             | 112             | 80             | $>$       |
|                                                   | 81             | 69              | 93              | 131          | 122             | 96              | 74             |           |
|                                                   | 84             | 55              | 61              | 62           | 75              | 75              | 76             |           |
|                                                   | 87             | 67              | 74              | 81           | 86              | 88              | 75             |           |
|                                                   | <b>91</b>      | 94              | 101             | 106          | 137             | 123             | 77             | $\square$ |
| Sonaration of Data                                |                |                 | No 9            |              | ion of l        | Data            |                | ,         |
| Separation of Data -                              |                |                 | 110.2           | eparat       | ion of l        | Dala            |                |           |

Samples from lot with no fall out from Ball and Cup defects

Samples from lot with ~ 5% fall out from Ball and Cup defects

DELPH


## **388 PBGA Interconnect Issue Impact of Controlling Warpage (r.t.)**

- Failure Analysis of Defects showed maximum room temperature warpage of +0.46 mils
- Negotiated a 0.3 mils Positive (corners up) Maximum warpage specification

|                       | Max Warpage      | Yield Loss Due to Sorting |                  |  |  |
|-----------------------|------------------|---------------------------|------------------|--|--|
|                       | Limit Set        | <b>Original Process</b>   | Improved Process |  |  |
|                       | <= 0.0 mils (up) | 19.0%                     | 0.9%             |  |  |
| Acceptable<br>Warpage | <= 0.1 mils (up) | 12.6%                     | 0.2%             |  |  |
|                       | <= 0.2 mils (up) | 7.6%                      | 0.0%             |  |  |
|                       | <= 0.3 mils (up) | 4.8%                      | 0.0%             |  |  |
|                       | <= 0.4 mils (up) | 3.3%                      | 0.0%             |  |  |
|                       | <= 0.5 mils (up) | 1.7%                      | 0.0%             |  |  |
|                       | <= 0.6 mils (up) | 0.9%                      | 0.0%             |  |  |
|                       | <= 0.7 mils (up) | 0.5%                      | 0.0%             |  |  |
|                       | <= 0.8 mils (up) | 0.2%                      | 0.0%             |  |  |



#### **388 PBGA Interconnect Issue** Defects found at visual and functional Test





## 388 PBGA Interconnect Issue Long Term Results

- No additional Ball-in-Cup failures have been found on original Milwaukee Product / Process with tightened specification
  - Assembly Process
  - Assembly Plant
  - Field Warranty

#### Supplier's Process has Drifted with Time

- Stable for 6 Months
- Gradual Increase in Warpage Level Over 3 Months
- Sharp Increase in Warpage Level Over 2 Months
  - » Significant Decrease in Yields
  - » Large Lot to Lot Variability
  - » No Assignable Cause Found
  - » Structured Problem Solving Effort Underway



#### **388 PBGA Interconnect Issue** Assembly Factors Leading to Ball-In-Cup Defects

- Non-optimized Reflow Profile
- PCB
  - Flatness
  - Stability during Reflow
  - Pad Design
- Solder Paste
  - Thickness
  - Stencil Pattern
  - Rheology
    - » Printability / Release
    - » Slump during Reflow
  - Flux Activity
- Placement Force
- Moisture Absorption of Parts Before Reflow
- PBGA Warpage During Reflow



## **388 PBGA Interconnect Issue** Significant Factors for BGA Warpage

### <u>Design</u>

### Package Geometry

- Package Size
- Package Dimensions
- Die Size / Thickness

## Substrate

- Thickness / Number of Layers
- Design of Layers
- $-{\bf a}_1, {\bf a}_{2,} {\bf T}_{g}$
- Modulus
- Flatness / Residual Stresses
  - » Laminate
  - » Plating

## Mold Compound

- $-a_{1}, a_{2}, T_{g}$
- Modulus (Filler Content)
- Cure Shrinkage

## Process

## Molding

- Pre-heat Temp & Uniformity
- Clamping Pressure & Uniformity
- Mold Temp & Uniformity
- In-Mold Cure Time

## Post Mold Cure

- Temperature
- Duration
- Fixturing
- Solder Ball Reflow Process
- Burn-In Process
- Data Retention Bake



## **388 PBGA Interconnect Issue Impact of Technology Directions**

#### Worsening of Problem

- PB Free Process
  - » Higher Reflow Temperatures
  - » Higher BGA Warpage Due to Lower Tg Molding Compounds
  - » Lower wetability of SnAgCu solder
- Packaging Trends
  - » Larger Packages
  - » Thinner Packages
  - » Smaller Die (with Semiconductor Technology Shrinks)
  - » Finer Pitches ? Smaller Balls ? Less Collapse

#### Improvement of Problem

- Improved BGA Designs
- Improved Substrate Designs
- Improved Molding Processes / Equipment
- Improved Molding Compounds



## 388 PBGA Interconnect Issue Future Changes

#### JEDEC Proposal to Constrain Warpage

- J-Std-020D Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices
- Require part to maintain coplanarity up through peak reflow temperature
  - » Baked dry condition
  - » After moisture Conditioning for rated MSL
- JEDEC Ballot Complete
- IPC Ballot Pending

**6.3** Moisture Induced Body Warpage - **Substrate Based Packages (e.g. BGA, LGA etc.):** Moisture Induced warpage could result in solder bridging or open connections during board assembly solder attachment operations. It is known that ingressed moisture can either increase or decrease the total package body warpage depending on the specific design of the component. Total package body warpage can be a function of the moisture content and can be affected by the ramp rates and dwells used to measure the total warpage effect at elevated temperatures. (Exceedingly slow ramp rates or long dwells at elevated temperatures will begin to dry the package). Care should be taken to ensure ramp rates and dwells used for the warpage measurements appropriately represent board assembly conditions. Package body warpage measured per JESD22-B112 should be characterized during package development and/or qualification to determine if warpage exceeding co-planarity and standoff dimension tolerances at any temperatures above the solder melting point, including the designated peak-reflow temperature exists. Both dry and moisture soaked components at the MSL being tested should be utilized for warpage measurements at temperatures above the solder melting point, including the designated peak reflow temperature.



## 388 PBGA Interconnect Issue Summary

#### Failure Mode is Real

- Defect level from low ppm to 5% seen in volume production
- Opens and Intermittent Connections
  - » Intermittent connections are very difficult to find electrically
  - » Possible, but expensive to find with automated visual inspection
- Aggravated by Product & Process Design

### Defect Mode Greatly Aggravated by Package Size

- Seen with 27 mm body size from 2 suppliers
- Significant problem above 35 mm body size
- Defect Level Aggravated by Many Process Factors
  - Assembly Processes
  - BGA Assembly Processes
  - Process Variation Impacts Defect Level

