ATTACHMENT 2

AEC - Q100-002 REV-E

HUMAN BODY MODEL ELECTROSTATIC DISCHARGE TEST
Acknowledgment

Any document involving a complex technology brings together experience and skills from many sources. The Automotive Electronics Council would especially like to recognize the following significant contributors for the revision of this document:

HBM Testing Sub-Committee Members:

- Alan Righter
 Analog Devices
- Lynn Norman
 US Army, AMRDEC
- Wolfgang Reinprecht
 AMS
- Ron Wantuck
 Autoliv
- Jim Peace
 Continental Automotive Systems
- Mark A. Kelly
 Delphi Corporation
- Nick Lycoudes
 Freescale
- Michael Stevens
 Freescale
- Drew Hoffman
 Gentex
- John He
 Grace Semiconductor
- Reinhold Gaertner
 Infineon Technologies
- Gary Fisher
 Johnson Controls
- John Baker
 Lattice Semiconductor
- Richard Aburano
 Maxim Integrated
- C.K. Barlingay
 Microchip
- Nick Martinez
 Microchip
- Lanney McHargue
 Murata
- Theo Smedes
 NXP Semiconductors
- Zhongning Liang
 NXP Semiconductors
- Robert Ashton
 ON Semiconductor
- Hugo Van Hove
 ON Semiconductor
- Thomas Stich
 Renesas Electronics
- Francis Classe
 Spansion
- Bassel Atala
 ST Microelectronics
- Marty Johnson
 Texas Instruments
- Scott Ward [HBM Team Leader]
 Texas Instruments
- Larry Dudley
 TRW Automotive
- Ted Krueger
 Vishay
- Cesar Avitia
 Visteon
- Dean Tsaggaris
 Xilinx
- Paul Hsueh
 Xilinx
NOTICE

AEC documents contain material that has been prepared, reviewed, and approved through the AEC Technical Committee.

AEC documents are designed to serve the automotive electronics industry through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than AEC members, whether the standard is to be used either domestically or internationally.

AEC documents are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action AEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the AEC documents. The information included in AEC documents represents a sound approach to product specification and application, principally from the automotive electronics system manufacturer viewpoint. No claims to be in conformance with this document shall be made unless all requirements stated in the document are met.

Inquiries, comments, and suggestions relative to the content of this AEC document should be addressed to the AEC Technical Committee on the link http://www.aecouncil.com.

Published by the Automotive Electronics Council.

This document may be downloaded free of charge, however AEC retains the copyright on this material. By downloading this file, the individual agrees not to charge for or resell the resulting material.

Printed in the U.S.A.
All rights reserved

Copyright © 2013 by the Automotive Electronics Council. This document may be freely reprinted with this copyright notice. This document cannot be changed without approval from the AEC Technical Committee.
Change Notification

The following summary details the changes incorporated into AEC-Q100-002 Rev-E:

- **HBM stressing is now done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. Any exception/addendum to this stress procedure is noted in Q100-002.**
METHOD - 002

HUMAN BODY MODEL (HBM)
ELECTROSTATIC DISCHARGE (ESD) TEST

All HBM testing performed on Integrated Circuit Devices to be AEC Q100 qualified shall be compliant to the latest revision of the ANSI/ESDA/JEDEC JS-001 specification, with additional requirements as defined herein.

1.0 Tester Qualification (refer to JS-001 Section 5.3 “HBM Tester Qualification”)

1.1 An HBM tester used for AEC qualification shall meet the waveform requirements in JS-001 Table 1 for every voltage level of stress. The qualification or re-qualification shall be done according to JS 001 section 5.3, options a, b or c.

2.0 Test Fixture Board Qualification (refer to JS-001 Section 5.4 “Test Fixture Board Qualification for Socketed Testers”)

2.1 An HBM test fixture board used for AEC qualification shall meet the waveform requirements in JS-001 Table 1 for every voltage level of stress. The qualification shall be done upon initial acceptance of the test fixture board.

2.2 Re-qualification of the board shall be done after service or repair of the board after initial acceptance.

3.0 Device Stressing (refer to JS-001 Section 6.2 “Device Stressing”)

3.1 AEC HBM qualification testing shall be done at the following levels and skipping voltage levels is not allowed:

a. 500 V, 1000 V and 2000 V

b. If failures are observed at 500 V, HBM testing at 250 V shall be done. If failures are observed at 250 V, HBM testing at 125 V shall be done. If the device fails at 250 V and a tester that meets waveform requirements at 125 V is not available, the part shall be classified Class 0A (i.e., < 125 V).

c. Voltage levels above 2000 V may be done for margin, higher threshold targets or high robustness characterization.

4.0 Pin Stress Combinations (refer to JS-001 Section 6.5 “Pin Stress Combinations”)

4.1 Devices with six (6) pins or less shall be tested with all possible pin pair combinations (one pin connected to terminal A, another pin connected to terminal B) regardless of pin name or function.
4.2 HBM stress for AEC Q100 qualification shall be initially done using JS-001 Table 2B, with the following exceptions:

a. HBM stress using a Low Parasitic Tester (LPT) (see Section 4.3 below)

b. If a tester artifact is deemed to cause a false HBM failure, options contained within JS-001 Table 2A may be used.

c. If a failure is deemed to be caused by cumulative stress, options contained within JS-001 Table 2A may be used.

4.3 AEC Q100 stress using a Low Parasitic Tester (LPT), such as a Two Pin HBM Tester.

a. Connectivity for each stress combination shall be verified. Refer to JS-001 Section 5.6.2 (“Non-Relay Testers”).

b. Stress may use the Non-Supply to Non-Supply stress method found in JS-001 Table 2A (i.e., Pin combination N+1).

c. In addition to the Coupled Non-Supply Pin Pairs, adjacent Non-Supply pins on the die shall be stressed in two-pin mode.

d. Options outlined in JS-001 Section 6.6 (“HBM Stressing with a Low Parasitic Simulator”) related to LPT HBM testers may be used.

5.0 Test Reporting

Upon completion of the required testing defined herein, a report of the testing performed and detailed results, as defined below, including any deviations, shall be submitted to the user upon request.

a. Tester Details
 • Tester type (e.g., relay, non-relay, low parasitic, etc.)
 • Charge removal circuit (if applicable)
 • Parasitic mitigation (if applicable)

b. Sample Details
 • Package configuration (e.g., pin count, lead form, etc.)
 • Sample sizes

c. Test Details
 • Pin groupings (e.g., non-supply, supply, coupled pin pairs, etc.)
 • Stress voltage levels
 • Test/Pin partitioning (if applicable)
 • Stress pin combinations
 • Exceptions to any tests performed
 o Pin combinations
 o Stress polarities
 o Stress voltages

d. Test Results
 • Summary of results
Revision History

<table>
<thead>
<tr>
<th>Rev #</th>
<th>Date of Change</th>
<th>Brief summary listing affected sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>June 9, 1994</td>
<td>Initial Release</td>
</tr>
<tr>
<td>A</td>
<td>May 15, 1995</td>
<td>Added copyright statement. Revised the following: Foreword; Sections 2.3, 2.4, 3.1, 3.2, 3.4, 3.5 (g, h, i, o, and p), and 4.0; Tables 1 and 2; Figures 2, 3, and 4.</td>
</tr>
<tr>
<td>B</td>
<td>Sept. 6, 1996</td>
<td>Revised the following: Sections 1.3.1, 1.3.7, 1.3.8, 2.1, 2.3, 3.1, 3.2, 3.3, 3.4, 3.5 (o, p, and q), 4.0, and 5.0; Figures 1 and 4.</td>
</tr>
<tr>
<td>C</td>
<td>Oct. 8, 1998</td>
<td>Revised the following: Sections 1.2, 2.1, 3.1, 3.5 (d, e, j, and k); Tables 1 and 2; Figure 1. Revision to section 3.5 (d, e, j, and k) reflects a change from three (3) ESD pulses with a one (1) second minimum delay between consecutive ESD pulses at each stress polarity to one (1) ESD pulse with a 500 millisecond minimum delay between consecutive ESD pulses. The use of three (3) ESD pulses with a one (1) second minimum delay between consecutive ESD pulses is also acceptable. Revision to Table 1 reflects a (\pm 10%) tolerance applied to all Ips (Ipeak for short) parameter values.</td>
</tr>
<tr>
<td>D</td>
<td>July 18, 2003</td>
<td>Revision to sections 3.5 (p & q) and 5 reflect addition of classification levels for ESD testing and lower voltage step for devices failing 500V. New Table 3 added listing HBM ESD classification levels.</td>
</tr>
</tbody>
</table>