Advisory Board

- Fred Bahrenburg – Dell
- Tim Cheung - RIM
- Heiko Dudek – Cadence
- Marcus Dombrowski – Volkswagen
- Johannes Edelhofer – Continental / BSH
- Stephan Frei – University of Dortmund (Germany)
- Masamitsu Honda – Impulse Physics Lab Japan
- Mike Hopkins – Hopkins Technical
- Vsevolod Ivanov – Auscom
- John Kinnear - IBM
- Frederic Lefon – Valeo
- Christian Lippert – Audi
- Wolfgang Pfaff – Bosch
- Patrice Pelissou – EADS
- Tuomas Reinvuo – Nokia
- Marc Sevoz – EADS
- Pasi Tamminen - Nokia / Technical University of Tempere
- Matti Uusumaki – Nokia / Semtech
- Wolfgang Wilkening – Bosch
- Rick Wong - Cisco
Outline

• What is System Level ESD?
• Component vs. System Level ESD
• Misunderstanding about System Level ESD
• “System Efficient ESD Design” or SEED
• Tools for System ESD Design
• Advanced Topics & Future of System Level ESD
Outline

• **What is System Level ESD?**
• Component vs. System Level ESD
• Misunderstanding about System Level ESD
• “System Efficient ESD Design” or SEED
• Tools for System ESD Design
• Advanced Topics & Future of System Level ESD

Industry Council 2013
System Level ESD

• **What is an ESD Event?**
 - Object becomes charged -> discharges to another
 - Charging levels range from 1 V to 35,000 V
 - Discharge currents range from 1 A to 60 A or more

• **What is a System Level ESD Event?**
 - An electrical system experiences an ESD Event

• **What can happen in a System Level ESD Event?**
 - The system continues to work without problem
 - The system experiences upset/lockup, but no physical failure.
 - Typically referred to as “Soft Failure”
 - May or may not require user intervention
 - The system experiences physical damage
 - Typically referred to as “Hard Failure”
System Level ESD

• **What are some sources of System ESD Events?**
 - Charged Humans
 - Charged Humans with a Metallic Tool
 - Charged Cables (Charger, Headset, USB, HDMI,...)
 - Charged Products themselves
 - Charged Metal Objects

• **How is the Event Transmitted to the System?**
 - An Direct contact to a system I/O pin
 - Direct contact to a system case
 - An arc through a vent hole or seam to a circuit board
 - Pickup of EM radiation from indirect ESD
 - A secondary discharge event within the system
System Level ESD Testing

- **System level ESD (qualification) testing** is intended to ensure that finished products can continue normal operation during and after a system level ESD strike.
 - The IEC 61000-4-2 ESD Test Method is used to represent one particular scenario of a charged human holding a metal object and discharging to a point on the system
 - This is the most common test method used to assess the ESD robustness of the system
 - Other test standards (e.g., ISO10605 for automotive, DO-160 for avionics) are used; depending on the application

- **System Level ESD Test Results**
 - Pass: System continues to work without interruption
 - Soft error that corrects on itself
 - Soft error requiring intervention (reboot, power cycle, …)
 - Physical failure
Categories of Failures (From Limited Case Studies)

- Common reported causes of system failure are:
 - Charged Board Events (CBE)
 - Cable Discharge Events (CDE)
 - Electrical Overstress (EOS)
 - IEC System Level ESD testing (for the “soft” failures, their relative percentage could be higher)

Industry Council 2013
Outline

• What is System Level ESD?
• **Component vs. System Level ESD**
• Misunderstanding about System Level ESD
• “System Efficient ESD Design” or SEED
• Tools for System ESD Design
• Advanced Topics & Future of System Level ESD
System level ESD vs. Component level ESD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>System level ESD - IEC</th>
<th>Component level ESD HBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event example</td>
<td>Charged human discharging through a metallic tool to a system</td>
<td>Charged human discharging through the skin to a component (IC)</td>
</tr>
<tr>
<td>Model</td>
<td>IEC system level ESD</td>
<td>Human Body Model (HBM)</td>
</tr>
<tr>
<td>Environment</td>
<td>End customer’s normal operation</td>
<td>Factory assembly</td>
</tr>
<tr>
<td>Standard example</td>
<td>IEC 61000-4-2 (Powered)</td>
<td>JS-001-2013 (Unpowered only)</td>
</tr>
<tr>
<td>Test</td>
<td>ISO 10605 (Unpowered / Powered)</td>
<td></td>
</tr>
<tr>
<td>R-C network</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✅ The two tests are distinctly different and serve different purposes

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak current</td>
<td>3.75 A / kV</td>
<td>0.7 A / kV</td>
</tr>
<tr>
<td>Typical requirement</td>
<td>8 KV</td>
<td>1 KV (Formerly 2kV)</td>
</tr>
<tr>
<td>Rise time</td>
<td>0.6 ~ 1 ns</td>
<td>2 ~ 10 ns</td>
</tr>
<tr>
<td>Pulse width</td>
<td>~50 ns</td>
<td>150 ns</td>
</tr>
<tr>
<td>Failures</td>
<td>Soft and Hard</td>
<td>Hard</td>
</tr>
<tr>
<td>Application</td>
<td>PC, Cell phone, Modem, etc…</td>
<td>IC</td>
</tr>
<tr>
<td>Tester examples</td>
<td>KeyTek Minizap, Noiseken ESS2000</td>
<td>KeyTek Zapmaster MK2, Oryx</td>
</tr>
</tbody>
</table>

Industry Council 2013
Waveforms of Component HBM and System Level

- System level ESD gun test has to be performed under powered conditions
- For powered systems there are two failure mechanisms
 - Destructive fail
 - Functional/Operational fail
- Improving the component ESD levels will not solve this issue
- There is no clear correlation of system level performance to the HBM robustness

4 kV HBM is not the same as 4 kV System Level IEC!

Note the extreme initial \(I_{\text{peak}}\) due to the direct capacitive coupling with the gun tip
Component Vs. System Test Result Correlation

- Case studies A through G represent data on products which had failure voltages characterized for both HBM and IEC based system level test.
- Data indicates no correlation of HBM failure voltage to IEC failure voltage.
- This disparity between the two test methods is due to the fundamental differences in the stress waveforms and in the way the stress is applied during the tests.

Industry Council 2013
“Improving the component ESD levels would not improve the system level ESD performance.”

Following this, since ICs are now designed for lower component ESD levels, why would this not be reflected by a sudden change in the overall health of a system for its ESD capability?

• The overall health of a system is dependent on a comprehensive approach to the protection methodology that includes a number of factors including on board protection components, optimized board signal routing, component packaging and, as a last line of defense, the component level protection.
Outline

• What is System Level ESD?
• Component vs. System Level ESD
• Misunderstanding about System Level ESD
• “System Efficient ESD Design” or SEED
• Tools for System ESD Design
• Advanced Topics & Future of System Level ESD
Industry Wide Challenge

There is a prevailing misunderstanding between the IC Suppliers and System Level Designers regarding:

- ESD test specification requirements of system vs. component providers;

- Understanding of the ESD failure / upset mechanisms and contributions to those mechanisms, from system specific vs. component specific constraints;

- Lack of acknowledged responsibility between system designers and component providers regarding proper system level ESD protection for their respective end products.
Is 2kV "HBM" testing the same as IEC Zap Gun testing?

- Unfortunately, there is sometimes confusion in the comparison of the two methods.

- Actual human contact to an IC component is simulated / tested with the Human Body Model Tester, which results in ESD stress between two or more component pins.

- This is completely different from the IEC Test method where the Zap Gun is used to test a system case, board or board connector and may or may not stress an IC.
Outline

- What is System Level ESD?
- Component vs. System Level ESD
- Misunderstanding about System Level ESD
- “System Efficient ESD Design” or SEED
- Tools for System ESD Design
- Advanced Topics & Future of System Level ESD
System Efficient ESD Design

• For efficient system ESD design, the Internal versus the External pins must first be defined

• The interaction from the external pin stress to the internal pin must then be analyzed

• Both Internal Pins and External Pins should meet minimum HBM and CDM levels as defined by component handling requirements; however, this is not a system requirement

• For achieving *system level* ESD robustness, the External Pins must be designed with a proper system protection strategy; which is independent of their HBM/CDM protection levels
Differentiation of Internal Vs. External Pins

• As identified here all the external pins are stressed with the IEC pulses
• What is the interaction to the corresponding interface pins?
Designing for the Overall System

- Internal Pins and External Pins should meet minimum HBM and CDM levels as defined by component handling requirements.
- System ESD protection design involves an understanding of the system, independent of component ESD levels.

Industry Council 2013
System-Efficient ESD Design (SEED) Concept

Do all pins on a device need to be tested using system level events?

- **Only the external pins** (e.g. USB data lines, Vbus line, ID and other control lines; codec, and battery pins, etc) need to be tested if the IC is not protected with on-board components. However, if the pin is protected by on-board components, TLP characterization of the pin is more useful.

- **Other internal ESD sensitive pins** (e.g. control pins, reset pins, and high speed data lines, etc.) can be inductively coupled during a discharge to the case and/or to an adjacent trace of an exposed pin undergoing system testing.

- These sensitive internal pins need to be identified and may need to be monitored during system level events.
Basic SEED Approach

- The residual pulse after external clamp is matched with the TLP information of the interface IC pin for different time domains.
- The board components are tuned for robust IEC protection.

- This method can be effective for the case of hard failures.
USB2 Interface Example with SEED

- 4 Pins to be protected (D+, D-, ID, VBUS)
- High Speed Data Rate (480Mbit/s)
- EMI/IEC ESD and Signal Integrity requirements

TVS* Transient Voltage Suppressor
Summary of Basic SEED (I)

• It is often misunderstood that a high level of HBM ESD protection will adequately protect a component from IEC testing
• Even pins with >10kV HBM may not survive 3kV IEC
• Thus the external TVS plays a major role; however, the TVS alone would not still guarantee that the 8kV IEC requirement will be met
• A detailed simulation approach with understanding of the role of the various elements on the board becomes essential for achieving effective protection
Advanced SEED

• System ESD can impact an entire system and can create both “hard” and “soft” failures.
• So called soft failures may involve complex EMC/EMI effects and also some Transient Latchup (TLU) phenomena.
• These issues require recommendations for component and system level manufacturers regarding proper protection / controls and best practice ESD design for EMC/EMI
SEED Categories-1

SEED Category 1:
External pin experiences hard failure due to a direct ESD zap (failure root cause: high pulse energy at exposed line)

OR

Non-external pin experiences a hard failure due to an indirect ESD zap (failure root cause: high transferred pulse energy to non-exposed lines)
SEED Categories-2,3

SEED Category 2:
Pin experiences a transient latch-up event which can lead to either a hard or soft failure (failure root cause: current injection into the substrate which is too high)

SEED Category 3:
Describes protection of an IC experiencing soft failure due to low amplitude transient bursts in the system during an ESD zap (for example, this may be caused by degraded signal integrity of an exposed line, cross-talk to a neighboring line or supply noise).
Summary of SEED Options

<table>
<thead>
<tr>
<th>Categories</th>
<th>Strategy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEED 1</td>
<td>System ESD simulation using TLP characterization</td>
<td>Also requires analysis of the PCB trace elements</td>
</tr>
<tr>
<td>SEED 2 and SEED 3</td>
<td>Use EMC best design methods</td>
<td>Also requires detailed analysis of PCB behavior and EM scanning tools</td>
</tr>
</tbody>
</table>
Outline

• What is System Level ESD?
• Component vs. System Level ESD
• Misunderstanding about System Level ESD
• “System Efficient ESD Design” or SEED
• Tools for System ESD Design
• Advanced Topics & Future of System Level ESD
Basic Vs Extended SEED

Basic SEED
Conducted discharge leads to damage

Simulations must include analysis of the PCB trace elements

Extended SEED
Covers also soft fails due to low injected currents and EM radiation

Needs additional EM scanning tools

Industry Council 2013
Discharge via wired network connected to PCB port

(A) ESD and EMI energy spread deep into the system, potentially creating secondary problems.

(B) ESD and EMI energy guided out of the system as soon as possible, keeping “noisy” and “quiet” areas isolated. Best practice.

(C) ESD and EMI energy primarily filtered at the system periphery. Some residual noise/energy continues on inside, but the level is reduced and does not create additional secondary issues. Best cost/performance tradeoff.

Off-Chip Protection is the ideal approach!
Industry Council 2013
Outline

• What is System Level ESD?
• Component vs. System Level ESD
• Misunderstanding about System Level ESD
• “System Efficient ESD Design” or SEED
• Tools for System ESD Design
• Advanced Topics & Future of System Level ESD
Advanced Topics (in JEP162)

- Coupling of ESD into Systems and Circuits
 - How Does ESD Couple into a System and Affect a Specific Device During System Level Testing?
 - What Happens When the Charge Gets into the System?
 - Recoverable or “Soft” System Failure Modes
 - System Degradation
 - Hard System Level Failure Modes
Advanced Topics (in JEP162)

- ESD/EMI Budget Strategy (Tradeoff Gamut examples)
- Equipment Ground (Exit for the Pulse)
- Quick Fixes (Copper tape, upgrading components)
- Information Available to the Designer (Conflicting datasheets)
Advanced Topics (in JEP162)

• Primary Goals of ESD/EMI Co-design Today
• Sufficient Signal Integrity and Functionality
• Adequate ESD/EMI Robustness and Compliance
• Cost and Time to Market
DSP and Microprocessors

- SerDes: 20 GB/sec at 20nm - Internal
- DDR: 2.3G at 28nm - Internal
- USB and HDMI - External
- RF Antenna low tolerance to capacitance - External

The external pins require special attention for all future system level ESD designs
Highlights of JEP161

Summary

• ESD test specification requirements of system providers must be clearly understood

• Using component level ESD specifications as a basis to address robust system designs must be discouraged

• Understanding of system ESD failures and upset mechanisms is important

→ Shared responsibility between system designers and component providers is critical
Main Message of JEP161

- A novel design concept called System Efficient ESD Design (SEED) can address hard failures.
- IC suppliers (and discrete protection diode suppliers) are requested to characterize their components in the high current regime (by TLP) and provide system ESD relevant models to system designers.
- System designers are responsible for assessing (e.g. simulating) the system protection (PCB & components) based on the models and data delivered by component supplier.